1// <mutex> -*- C++ -*-
2
3// Copyright (C) 2003-2024 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/** @file include/mutex
26 * This is a Standard C++ Library header.
27 */
28
29#ifndef _GLIBCXX_MUTEX
30#define _GLIBCXX_MUTEX 1
31
32#pragma GCC system_header
33
34#include <bits/requires_hosted.h> // concurrency
35
36#if __cplusplus < 201103L
37# include <bits/c++0x_warning.h>
38#else
39
40#include <tuple> // std::tuple
41#include <type_traits> // is_same_v
42#include <errno.h> // EAGAIN, EDEADLK
43#include <bits/chrono.h> // duration, time_point, is_clock_v
44#include <bits/functexcept.h> // __throw_system_error
45#include <bits/invoke.h> // __invoke
46#include <bits/move.h> // std::forward
47#include <bits/std_mutex.h>
48#include <bits/unique_lock.h>
49#if ! _GTHREAD_USE_MUTEX_TIMEDLOCK
50# include <condition_variable>
51# include <thread>
52#endif
53#include <ext/atomicity.h> // __gnu_cxx::__is_single_threaded
54
55#if defined _GLIBCXX_HAS_GTHREADS && ! defined _GLIBCXX_HAVE_TLS
56# include <bits/std_function.h> // std::function
57#endif
58
59#define __glibcxx_want_scoped_lock
60#include <bits/version.h>
61
62namespace std _GLIBCXX_VISIBILITY(default)
63{
64_GLIBCXX_BEGIN_NAMESPACE_VERSION
65
66 /**
67 * @addtogroup mutexes
68 * @{
69 */
70
71#ifdef _GLIBCXX_HAS_GTHREADS
72 /// @cond undocumented
73
74 // Common base class for std::recursive_mutex and std::recursive_timed_mutex
75 class __recursive_mutex_base
76 {
77 protected:
78 typedef __gthread_recursive_mutex_t __native_type;
79
80 __recursive_mutex_base(const __recursive_mutex_base&) = delete;
81 __recursive_mutex_base& operator=(const __recursive_mutex_base&) = delete;
82
83#ifdef __GTHREAD_RECURSIVE_MUTEX_INIT
84 __native_type _M_mutex = __GTHREAD_RECURSIVE_MUTEX_INIT;
85
86 __recursive_mutex_base() = default;
87#else
88 __native_type _M_mutex;
89
90 __recursive_mutex_base()
91 {
92 // XXX EAGAIN, ENOMEM, EPERM, EBUSY(may), EINVAL(may)
93 __GTHREAD_RECURSIVE_MUTEX_INIT_FUNCTION(mutex: &_M_mutex);
94 }
95
96 ~__recursive_mutex_base()
97 { __gthread_recursive_mutex_destroy(mutex: &_M_mutex); }
98#endif
99 };
100 /// @endcond
101
102 /** The standard recursive mutex type.
103 *
104 * A recursive mutex can be locked more than once by the same thread.
105 * Other threads cannot lock the mutex until the owning thread unlocks it
106 * as many times as it was locked.
107 *
108 * @headerfile mutex
109 * @since C++11
110 */
111 class recursive_mutex : private __recursive_mutex_base
112 {
113 public:
114 typedef __native_type* native_handle_type;
115
116 recursive_mutex() = default;
117 ~recursive_mutex() = default;
118
119 recursive_mutex(const recursive_mutex&) = delete;
120 recursive_mutex& operator=(const recursive_mutex&) = delete;
121
122 void
123 lock()
124 {
125 int __e = __gthread_recursive_mutex_lock(mutex: &_M_mutex);
126
127 // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
128 if (__e)
129 __throw_system_error(__e);
130 }
131
132 _GLIBCXX_NODISCARD
133 bool
134 try_lock() noexcept
135 {
136 // XXX EINVAL, EAGAIN, EBUSY
137 return !__gthread_recursive_mutex_trylock(mutex: &_M_mutex);
138 }
139
140 void
141 unlock()
142 {
143 // XXX EINVAL, EAGAIN, EBUSY
144 __gthread_recursive_mutex_unlock(mutex: &_M_mutex);
145 }
146
147 native_handle_type
148 native_handle() noexcept
149 { return &_M_mutex; }
150 };
151
152#if _GTHREAD_USE_MUTEX_TIMEDLOCK
153 /// @cond undocumented
154
155 template<typename _Derived>
156 class __timed_mutex_impl
157 {
158 protected:
159 template<typename _Rep, typename _Period>
160 bool
161 _M_try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
162 {
163#if _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
164 using __clock = chrono::steady_clock;
165#else
166 using __clock = chrono::system_clock;
167#endif
168
169 auto __rt = chrono::duration_cast<__clock::duration>(__rtime);
170 if (ratio_greater<__clock::period, _Period>())
171 ++__rt;
172 return _M_try_lock_until(__clock::now() + __rt);
173 }
174
175 template<typename _Duration>
176 bool
177 _M_try_lock_until(const chrono::time_point<chrono::system_clock,
178 _Duration>& __atime)
179 {
180 auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
181 auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
182
183 __gthread_time_t __ts = {
184 .tv_sec: static_cast<std::time_t>(__s.time_since_epoch().count()),
185 .tv_nsec: static_cast<long>(__ns.count())
186 };
187
188 return static_cast<_Derived*>(this)->_M_timedlock(__ts);
189 }
190
191#ifdef _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
192 template<typename _Duration>
193 bool
194 _M_try_lock_until(const chrono::time_point<chrono::steady_clock,
195 _Duration>& __atime)
196 {
197 auto __s = chrono::time_point_cast<chrono::seconds>(__atime);
198 auto __ns = chrono::duration_cast<chrono::nanoseconds>(__atime - __s);
199
200 __gthread_time_t __ts = {
201 .tv_sec: static_cast<std::time_t>(__s.time_since_epoch().count()),
202 .tv_nsec: static_cast<long>(__ns.count())
203 };
204
205 return static_cast<_Derived*>(this)->_M_clocklock(CLOCK_MONOTONIC,
206 __ts);
207 }
208#endif
209
210 template<typename _Clock, typename _Duration>
211 bool
212 _M_try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
213 {
214#if __cplusplus > 201703L
215 static_assert(chrono::is_clock_v<_Clock>);
216#endif
217 // The user-supplied clock may not tick at the same rate as
218 // steady_clock, so we must loop in order to guarantee that
219 // the timeout has expired before returning false.
220 auto __now = _Clock::now();
221 do {
222 auto __rtime = __atime - __now;
223 if (_M_try_lock_for(__rtime))
224 return true;
225 __now = _Clock::now();
226 } while (__atime > __now);
227 return false;
228 }
229 };
230 /// @endcond
231
232 /** The standard timed mutex type.
233 *
234 * A non-recursive mutex that supports a timeout when trying to acquire the
235 * lock.
236 *
237 * @headerfile mutex
238 * @since C++11
239 */
240 class timed_mutex
241 : private __mutex_base, public __timed_mutex_impl<timed_mutex>
242 {
243 public:
244 typedef __native_type* native_handle_type;
245
246 timed_mutex() = default;
247 ~timed_mutex() = default;
248
249 timed_mutex(const timed_mutex&) = delete;
250 timed_mutex& operator=(const timed_mutex&) = delete;
251
252 void
253 lock()
254 {
255 int __e = __gthread_mutex_lock(mutex: &_M_mutex);
256
257 // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
258 if (__e)
259 __throw_system_error(__e);
260 }
261
262 _GLIBCXX_NODISCARD
263 bool
264 try_lock() noexcept
265 {
266 // XXX EINVAL, EAGAIN, EBUSY
267 return !__gthread_mutex_trylock(mutex: &_M_mutex);
268 }
269
270 template <class _Rep, class _Period>
271 _GLIBCXX_NODISCARD
272 bool
273 try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
274 { return _M_try_lock_for(__rtime); }
275
276 template <class _Clock, class _Duration>
277 _GLIBCXX_NODISCARD
278 bool
279 try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
280 { return _M_try_lock_until(__atime); }
281
282 void
283 unlock()
284 {
285 // XXX EINVAL, EAGAIN, EBUSY
286 __gthread_mutex_unlock(mutex: &_M_mutex);
287 }
288
289 native_handle_type
290 native_handle() noexcept
291 { return &_M_mutex; }
292
293 private:
294 friend class __timed_mutex_impl<timed_mutex>;
295
296 bool
297 _M_timedlock(const __gthread_time_t& __ts)
298 { return !__gthread_mutex_timedlock(mutex: &_M_mutex, abs_timeout: &__ts); }
299
300#if _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
301 bool
302 _M_clocklock(clockid_t __clockid, const __gthread_time_t& __ts)
303 { return !pthread_mutex_clocklock(&_M_mutex, __clockid, &__ts); }
304#endif
305 };
306
307 /** The standard recursive timed mutex type.
308 *
309 * A recursive mutex that supports a timeout when trying to acquire the
310 * lock. A recursive mutex can be locked more than once by the same thread.
311 * Other threads cannot lock the mutex until the owning thread unlocks it
312 * as many times as it was locked.
313 *
314 * @headerfile mutex
315 * @since C++11
316 */
317 class recursive_timed_mutex
318 : private __recursive_mutex_base,
319 public __timed_mutex_impl<recursive_timed_mutex>
320 {
321 public:
322 typedef __native_type* native_handle_type;
323
324 recursive_timed_mutex() = default;
325 ~recursive_timed_mutex() = default;
326
327 recursive_timed_mutex(const recursive_timed_mutex&) = delete;
328 recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
329
330 void
331 lock()
332 {
333 int __e = __gthread_recursive_mutex_lock(mutex: &_M_mutex);
334
335 // EINVAL, EAGAIN, EBUSY, EINVAL, EDEADLK(may)
336 if (__e)
337 __throw_system_error(__e);
338 }
339
340 _GLIBCXX_NODISCARD
341 bool
342 try_lock() noexcept
343 {
344 // XXX EINVAL, EAGAIN, EBUSY
345 return !__gthread_recursive_mutex_trylock(mutex: &_M_mutex);
346 }
347
348 template <class _Rep, class _Period>
349 _GLIBCXX_NODISCARD
350 bool
351 try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
352 { return _M_try_lock_for(__rtime); }
353
354 template <class _Clock, class _Duration>
355 _GLIBCXX_NODISCARD
356 bool
357 try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
358 { return _M_try_lock_until(__atime); }
359
360 void
361 unlock()
362 {
363 // XXX EINVAL, EAGAIN, EBUSY
364 __gthread_recursive_mutex_unlock(mutex: &_M_mutex);
365 }
366
367 native_handle_type
368 native_handle() noexcept
369 { return &_M_mutex; }
370
371 private:
372 friend class __timed_mutex_impl<recursive_timed_mutex>;
373
374 bool
375 _M_timedlock(const __gthread_time_t& __ts)
376 { return !__gthread_recursive_mutex_timedlock(mutex: &_M_mutex, abs_timeout: &__ts); }
377
378#ifdef _GLIBCXX_USE_PTHREAD_MUTEX_CLOCKLOCK
379 bool
380 _M_clocklock(clockid_t __clockid, const __gthread_time_t& __ts)
381 { return !pthread_mutex_clocklock(&_M_mutex, __clockid, &__ts); }
382#endif
383 };
384
385#else // !_GTHREAD_USE_MUTEX_TIMEDLOCK
386
387 /// timed_mutex
388 class timed_mutex
389 {
390 mutex _M_mut;
391 condition_variable _M_cv;
392 bool _M_locked = false;
393
394 public:
395
396 timed_mutex() = default;
397 ~timed_mutex() { __glibcxx_assert( !_M_locked ); }
398
399 timed_mutex(const timed_mutex&) = delete;
400 timed_mutex& operator=(const timed_mutex&) = delete;
401
402 void
403 lock()
404 {
405 unique_lock<mutex> __lk(_M_mut);
406 _M_cv.wait(__lk, [&]{ return !_M_locked; });
407 _M_locked = true;
408 }
409
410 _GLIBCXX_NODISCARD
411 bool
412 try_lock()
413 {
414 lock_guard<mutex> __lk(_M_mut);
415 if (_M_locked)
416 return false;
417 _M_locked = true;
418 return true;
419 }
420
421 template<typename _Rep, typename _Period>
422 _GLIBCXX_NODISCARD
423 bool
424 try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
425 {
426 unique_lock<mutex> __lk(_M_mut);
427 if (!_M_cv.wait_for(__lk, __rtime, [&]{ return !_M_locked; }))
428 return false;
429 _M_locked = true;
430 return true;
431 }
432
433 template<typename _Clock, typename _Duration>
434 _GLIBCXX_NODISCARD
435 bool
436 try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
437 {
438 unique_lock<mutex> __lk(_M_mut);
439 if (!_M_cv.wait_until(__lk, __atime, [&]{ return !_M_locked; }))
440 return false;
441 _M_locked = true;
442 return true;
443 }
444
445 void
446 unlock()
447 {
448 lock_guard<mutex> __lk(_M_mut);
449 __glibcxx_assert( _M_locked );
450 _M_locked = false;
451 _M_cv.notify_one();
452 }
453 };
454
455 /// recursive_timed_mutex
456 class recursive_timed_mutex
457 {
458 mutex _M_mut;
459 condition_variable _M_cv;
460 thread::id _M_owner;
461 unsigned _M_count = 0;
462
463 // Predicate type that tests whether the current thread can lock a mutex.
464 struct _Can_lock
465 {
466 // Returns true if the mutex is unlocked or is locked by _M_caller.
467 bool
468 operator()() const noexcept
469 { return _M_mx->_M_count == 0 || _M_mx->_M_owner == _M_caller; }
470
471 const recursive_timed_mutex* _M_mx;
472 thread::id _M_caller;
473 };
474
475 public:
476
477 recursive_timed_mutex() = default;
478 ~recursive_timed_mutex() { __glibcxx_assert( _M_count == 0 ); }
479
480 recursive_timed_mutex(const recursive_timed_mutex&) = delete;
481 recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete;
482
483 void
484 lock()
485 {
486 auto __id = this_thread::get_id();
487 _Can_lock __can_lock{this, __id};
488 unique_lock<mutex> __lk(_M_mut);
489 _M_cv.wait(__lk, __can_lock);
490 if (_M_count == -1u)
491 __throw_system_error(EAGAIN); // [thread.timedmutex.recursive]/3
492 _M_owner = __id;
493 ++_M_count;
494 }
495
496 _GLIBCXX_NODISCARD
497 bool
498 try_lock()
499 {
500 auto __id = this_thread::get_id();
501 _Can_lock __can_lock{this, __id};
502 lock_guard<mutex> __lk(_M_mut);
503 if (!__can_lock())
504 return false;
505 if (_M_count == -1u)
506 return false;
507 _M_owner = __id;
508 ++_M_count;
509 return true;
510 }
511
512 template<typename _Rep, typename _Period>
513 _GLIBCXX_NODISCARD
514 bool
515 try_lock_for(const chrono::duration<_Rep, _Period>& __rtime)
516 {
517 auto __id = this_thread::get_id();
518 _Can_lock __can_lock{this, __id};
519 unique_lock<mutex> __lk(_M_mut);
520 if (!_M_cv.wait_for(__lk, __rtime, __can_lock))
521 return false;
522 if (_M_count == -1u)
523 return false;
524 _M_owner = __id;
525 ++_M_count;
526 return true;
527 }
528
529 template<typename _Clock, typename _Duration>
530 _GLIBCXX_NODISCARD
531 bool
532 try_lock_until(const chrono::time_point<_Clock, _Duration>& __atime)
533 {
534 auto __id = this_thread::get_id();
535 _Can_lock __can_lock{this, __id};
536 unique_lock<mutex> __lk(_M_mut);
537 if (!_M_cv.wait_until(__lk, __atime, __can_lock))
538 return false;
539 if (_M_count == -1u)
540 return false;
541 _M_owner = __id;
542 ++_M_count;
543 return true;
544 }
545
546 void
547 unlock()
548 {
549 lock_guard<mutex> __lk(_M_mut);
550 __glibcxx_assert( _M_owner == this_thread::get_id() );
551 __glibcxx_assert( _M_count > 0 );
552 if (--_M_count == 0)
553 {
554 _M_owner = {};
555 _M_cv.notify_one();
556 }
557 }
558 };
559
560#endif
561#endif // _GLIBCXX_HAS_GTHREADS
562
563 /// @cond undocumented
564 namespace __detail
565 {
566 // Lock the last lockable, after all previous ones are locked.
567 template<typename _Lockable>
568 inline int
569 __try_lock_impl(_Lockable& __l)
570 {
571 if (unique_lock<_Lockable> __lock{__l, try_to_lock})
572 {
573 __lock.release();
574 return -1;
575 }
576 else
577 return 0;
578 }
579
580 // Lock each lockable in turn.
581 // Use iteration if all lockables are the same type, recursion otherwise.
582 template<typename _L0, typename... _Lockables>
583 inline int
584 __try_lock_impl(_L0& __l0, _Lockables&... __lockables)
585 {
586#if __cplusplus >= 201703L
587 if constexpr ((is_same_v<_L0, _Lockables> && ...))
588 {
589 constexpr int _Np = 1 + sizeof...(_Lockables);
590 unique_lock<_L0> __locks[_Np] = {
591 {__l0, defer_lock}, {__lockables, defer_lock}...
592 };
593 for (int __i = 0; __i < _Np; ++__i)
594 {
595 if (!__locks[__i].try_lock())
596 {
597 const int __failed = __i;
598 while (__i--)
599 __locks[__i].unlock();
600 return __failed;
601 }
602 }
603 for (auto& __l : __locks)
604 __l.release();
605 return -1;
606 }
607 else
608#endif
609 if (unique_lock<_L0> __lock{__l0, try_to_lock})
610 {
611 int __idx = __detail::__try_lock_impl(__lockables...);
612 if (__idx == -1)
613 {
614 __lock.release();
615 return -1;
616 }
617 return __idx + 1;
618 }
619 else
620 return 0;
621 }
622
623 } // namespace __detail
624 /// @endcond
625
626 /** @brief Generic try_lock.
627 * @param __l1 Meets Lockable requirements (try_lock() may throw).
628 * @param __l2 Meets Lockable requirements (try_lock() may throw).
629 * @param __l3 Meets Lockable requirements (try_lock() may throw).
630 * @return Returns -1 if all try_lock() calls return true. Otherwise returns
631 * a 0-based index corresponding to the argument that returned false.
632 * @post Either all arguments are locked, or none will be.
633 *
634 * Sequentially calls try_lock() on each argument.
635 */
636 template<typename _L1, typename _L2, typename... _L3>
637 _GLIBCXX_NODISCARD
638 inline int
639 try_lock(_L1& __l1, _L2& __l2, _L3&... __l3)
640 {
641 return __detail::__try_lock_impl(__l1, __l2, __l3...);
642 }
643
644 /// @cond undocumented
645 namespace __detail
646 {
647 // This function can recurse up to N levels deep, for N = 1+sizeof...(L1).
648 // On each recursion the lockables are rotated left one position,
649 // e.g. depth 0: l0, l1, l2; depth 1: l1, l2, l0; depth 2: l2, l0, l1.
650 // When a call to l_i.try_lock() fails it recurses/returns to depth=i
651 // so that l_i is the first argument, and then blocks until l_i is locked.
652 template<typename _L0, typename... _L1>
653 void
654 __lock_impl(int& __i, int __depth, _L0& __l0, _L1&... __l1)
655 {
656 while (__i >= __depth)
657 {
658 if (__i == __depth)
659 {
660 int __failed = 1; // index that couldn't be locked
661 {
662 unique_lock<_L0> __first(__l0);
663 __failed += __detail::__try_lock_impl(__l1...);
664 if (!__failed)
665 {
666 __i = -1; // finished
667 __first.release();
668 return;
669 }
670 }
671#if defined _GLIBCXX_HAS_GTHREADS && defined _GLIBCXX_USE_SCHED_YIELD
672 __gthread_yield();
673#endif
674 constexpr auto __n = 1 + sizeof...(_L1);
675 __i = (__depth + __failed) % __n;
676 }
677 else // rotate left until l_i is first.
678 __detail::__lock_impl(__i, __depth + 1, __l1..., __l0);
679 }
680 }
681
682 } // namespace __detail
683 /// @endcond
684
685 /** @brief Generic lock.
686 * @param __l1 Meets Lockable requirements (try_lock() may throw).
687 * @param __l2 Meets Lockable requirements (try_lock() may throw).
688 * @param __l3 Meets Lockable requirements (try_lock() may throw).
689 * @throw An exception thrown by an argument's lock() or try_lock() member.
690 * @post All arguments are locked.
691 *
692 * All arguments are locked via a sequence of calls to lock(), try_lock()
693 * and unlock(). If this function exits via an exception any locks that
694 * were obtained will be released.
695 */
696 template<typename _L1, typename _L2, typename... _L3>
697 void
698 lock(_L1& __l1, _L2& __l2, _L3&... __l3)
699 {
700#if __cplusplus >= 201703L
701 if constexpr (is_same_v<_L1, _L2> && (is_same_v<_L1, _L3> && ...))
702 {
703 constexpr int _Np = 2 + sizeof...(_L3);
704 unique_lock<_L1> __locks[] = {
705 {__l1, defer_lock}, {__l2, defer_lock}, {__l3, defer_lock}...
706 };
707 int __first = 0;
708 do {
709 __locks[__first].lock();
710 for (int __j = 1; __j < _Np; ++__j)
711 {
712 const int __idx = (__first + __j) % _Np;
713 if (!__locks[__idx].try_lock())
714 {
715 for (int __k = __j; __k != 0; --__k)
716 __locks[(__first + __k - 1) % _Np].unlock();
717 __first = __idx;
718 break;
719 }
720 }
721 } while (!__locks[__first].owns_lock());
722
723 for (auto& __l : __locks)
724 __l.release();
725 }
726 else
727#endif
728 {
729 int __i = 0;
730 __detail::__lock_impl(__i, 0, __l1, __l2, __l3...);
731 }
732 }
733
734#ifdef __cpp_lib_scoped_lock // C++ >= 17 && hosted && gthread
735 /** @brief A scoped lock type for multiple lockable objects.
736 *
737 * A scoped_lock controls mutex ownership within a scope, releasing
738 * ownership in the destructor.
739 *
740 * @headerfile mutex
741 * @since C++17
742 */
743 template<typename... _MutexTypes>
744 class scoped_lock
745 {
746 public:
747
748 [[nodiscard]]
749 explicit scoped_lock(_MutexTypes&... __m) : _M_devices(std::tie(__m...))
750 { std::lock(__m...); }
751
752 [[nodiscard]]
753 explicit scoped_lock(adopt_lock_t, _MutexTypes&... __m) noexcept
754 : _M_devices(std::tie(__m...))
755 { } // calling thread owns mutex
756
757 ~scoped_lock()
758 { std::apply([](auto&... __m) { (__m.unlock(), ...); }, _M_devices); }
759
760 scoped_lock(const scoped_lock&) = delete;
761 scoped_lock& operator=(const scoped_lock&) = delete;
762
763 private:
764 tuple<_MutexTypes&...> _M_devices;
765 };
766
767 template<>
768 class scoped_lock<>
769 {
770 public:
771 explicit scoped_lock() = default;
772 explicit scoped_lock(adopt_lock_t) noexcept { }
773 ~scoped_lock() = default;
774
775 scoped_lock(const scoped_lock&) = delete;
776 scoped_lock& operator=(const scoped_lock&) = delete;
777 };
778
779 template<typename _Mutex>
780 class scoped_lock<_Mutex>
781 {
782 public:
783 using mutex_type = _Mutex;
784
785 [[nodiscard]]
786 explicit scoped_lock(mutex_type& __m) : _M_device(__m)
787 { _M_device.lock(); }
788
789 [[nodiscard]]
790 explicit scoped_lock(adopt_lock_t, mutex_type& __m) noexcept
791 : _M_device(__m)
792 { } // calling thread owns mutex
793
794 ~scoped_lock()
795 { _M_device.unlock(); }
796
797 scoped_lock(const scoped_lock&) = delete;
798 scoped_lock& operator=(const scoped_lock&) = delete;
799
800 private:
801 mutex_type& _M_device;
802 };
803#endif // __cpp_lib_scoped_lock
804
805#ifdef _GLIBCXX_HAS_GTHREADS
806 /// Flag type used by std::call_once
807 struct once_flag
808 {
809 constexpr once_flag() noexcept = default;
810
811 /// Deleted copy constructor
812 once_flag(const once_flag&) = delete;
813 /// Deleted assignment operator
814 once_flag& operator=(const once_flag&) = delete;
815
816 private:
817 // For gthreads targets a pthread_once_t is used with pthread_once, but
818 // for most targets this doesn't work correctly for exceptional executions.
819 __gthread_once_t _M_once = __GTHREAD_ONCE_INIT;
820
821 struct _Prepare_execution;
822
823 template<typename _Callable, typename... _Args>
824 friend void
825 call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
826 };
827
828 /// @cond undocumented
829# ifdef _GLIBCXX_HAVE_TLS
830 // If TLS is available use thread-local state for the type-erased callable
831 // that is being run by std::call_once in the current thread.
832 extern __thread void* __once_callable;
833 extern __thread void (*__once_call)();
834
835 // RAII type to set up state for pthread_once call.
836 struct once_flag::_Prepare_execution
837 {
838 template<typename _Callable>
839 explicit
840 _Prepare_execution(_Callable& __c)
841 {
842 // Store address in thread-local pointer:
843 __once_callable = std::__addressof(__c);
844 // Trampoline function to invoke the closure via thread-local pointer:
845 __once_call = [] { (*static_cast<_Callable*>(__once_callable))(); };
846 }
847
848 ~_Prepare_execution()
849 {
850 // PR libstdc++/82481
851 __once_callable = nullptr;
852 __once_call = nullptr;
853 }
854
855 _Prepare_execution(const _Prepare_execution&) = delete;
856 _Prepare_execution& operator=(const _Prepare_execution&) = delete;
857 };
858
859# else
860 // Without TLS use a global std::mutex and store the callable in a
861 // global std::function.
862 extern function<void()> __once_functor;
863
864 extern void
865 __set_once_functor_lock_ptr(unique_lock<mutex>*);
866
867 extern mutex&
868 __get_once_mutex();
869
870 // RAII type to set up state for pthread_once call.
871 struct once_flag::_Prepare_execution
872 {
873 template<typename _Callable>
874 explicit
875 _Prepare_execution(_Callable& __c)
876 {
877 // Store the callable in the global std::function
878 __once_functor = __c;
879 __set_once_functor_lock_ptr(&_M_functor_lock);
880 }
881
882 ~_Prepare_execution()
883 {
884 if (_M_functor_lock)
885 __set_once_functor_lock_ptr(nullptr);
886 }
887
888 private:
889 // XXX This deadlocks if used recursively (PR 97949)
890 unique_lock<mutex> _M_functor_lock{__get_once_mutex()};
891
892 _Prepare_execution(const _Prepare_execution&) = delete;
893 _Prepare_execution& operator=(const _Prepare_execution&) = delete;
894 };
895# endif
896 /// @endcond
897
898 // This function is passed to pthread_once by std::call_once.
899 // It runs __once_call() or __once_functor().
900 extern "C" void __once_proxy(void);
901
902 /// Invoke a callable and synchronize with other calls using the same flag
903 template<typename _Callable, typename... _Args>
904 void
905 call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
906 {
907 // Closure type that runs the function
908 auto __callable = [&] {
909 std::__invoke(std::forward<_Callable>(__f),
910 std::forward<_Args>(__args)...);
911 };
912
913 once_flag::_Prepare_execution __exec(__callable);
914
915 // XXX pthread_once does not reset the flag if an exception is thrown.
916 if (int __e = __gthread_once(once: &__once._M_once, func: &__once_proxy))
917 __throw_system_error(__e);
918 }
919
920#else // _GLIBCXX_HAS_GTHREADS
921
922 /// Flag type used by std::call_once
923 struct once_flag
924 {
925 constexpr once_flag() noexcept = default;
926
927 /// Deleted copy constructor
928 once_flag(const once_flag&) = delete;
929 /// Deleted assignment operator
930 once_flag& operator=(const once_flag&) = delete;
931
932 private:
933 // There are two different std::once_flag interfaces, abstracting four
934 // different implementations.
935 // The single-threaded interface uses the _M_activate() and _M_finish(bool)
936 // functions, which start and finish an active execution respectively.
937 // See [thread.once.callonce] in C++11 for the definition of
938 // active/passive/returning/exceptional executions.
939 enum _Bits : int { _Init = 0, _Active = 1, _Done = 2 };
940
941 int _M_once = _Bits::_Init;
942
943 // Check to see if all executions will be passive now.
944 bool
945 _M_passive() const noexcept;
946
947 // Attempts to begin an active execution.
948 bool _M_activate();
949
950 // Must be called to complete an active execution.
951 // The argument is true if the active execution was a returning execution,
952 // false if it was an exceptional execution.
953 void _M_finish(bool __returning) noexcept;
954
955 // RAII helper to call _M_finish.
956 struct _Active_execution
957 {
958 explicit _Active_execution(once_flag& __flag) : _M_flag(__flag) { }
959
960 ~_Active_execution() { _M_flag._M_finish(_M_returning); }
961
962 _Active_execution(const _Active_execution&) = delete;
963 _Active_execution& operator=(const _Active_execution&) = delete;
964
965 once_flag& _M_flag;
966 bool _M_returning = false;
967 };
968
969 template<typename _Callable, typename... _Args>
970 friend void
971 call_once(once_flag& __once, _Callable&& __f, _Args&&... __args);
972 };
973
974 // Inline definitions of std::once_flag members for single-threaded targets.
975
976 inline bool
977 once_flag::_M_passive() const noexcept
978 { return _M_once == _Bits::_Done; }
979
980 inline bool
981 once_flag::_M_activate()
982 {
983 if (_M_once == _Bits::_Init) [[__likely__]]
984 {
985 _M_once = _Bits::_Active;
986 return true;
987 }
988 else if (_M_passive()) // Caller should have checked this already.
989 return false;
990 else
991 __throw_system_error(EDEADLK);
992 }
993
994 inline void
995 once_flag::_M_finish(bool __returning) noexcept
996 { _M_once = __returning ? _Bits::_Done : _Bits::_Init; }
997
998 /// Invoke a callable and synchronize with other calls using the same flag
999 template<typename _Callable, typename... _Args>
1000 inline void
1001 call_once(once_flag& __once, _Callable&& __f, _Args&&... __args)
1002 {
1003 if (__once._M_passive())
1004 return;
1005 else if (__once._M_activate())
1006 {
1007 once_flag::_Active_execution __exec(__once);
1008
1009 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1010 // 2442. call_once() shouldn't DECAY_COPY()
1011 std::__invoke(std::forward<_Callable>(__f),
1012 std::forward<_Args>(__args)...);
1013
1014 // __f(__args...) did not throw
1015 __exec._M_returning = true;
1016 }
1017 }
1018#endif // _GLIBCXX_HAS_GTHREADS
1019
1020 /// @} group mutexes
1021_GLIBCXX_END_NAMESPACE_VERSION
1022} // namespace
1023
1024#endif // C++11
1025
1026#endif // _GLIBCXX_MUTEX
1027